How to Open a Black Box Classifier for Tabular Data

نویسندگان

چکیده

A lack of transparency in machine learning models can limit their application. We show that analysis variance (ANOVA) methods extract interpretable predictive from them. This is possible because ANOVA decompositions represent multivariate functions as sums fewer variables. Retaining the terms summation involving only one or two variables provides an efficient method to open black box classifiers. The proposed builds generalised additive (GAMs) by application L1 regularised logistic regression component retained decomposition logit function. resulting GAMs are derived using alternative measures, Dirac and Lebesgue. Both measures produce smooth consistent. term partial responses structured (PRiSM) describes family classifiers decompositions. demonstrate interpretability performance for multilayer perceptron, support vector machines gradient-boosting applied synthetic data several real-world sets, namely Pima Diabetes, German Credit Card, Statlog Shuttle UCI repository. shown be compliant with basic principles a formal framework interpretability.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Opening the Black Box : How Data

Opening the Black Box: How Data Mining Works with examples for Social Scientists in Higher Education Research Terrence Willett © 200

متن کامل

How to Improve an Exponentiation Black-Box

In this paper we present a method for improving the performance of RSA-type exponentiations. The scheme is based on the observation that replacing the exponent d by d′ = d+ kφ(n) has no arithmetic impact but results in significant speed-ups when k is properly chosen. Statistical analysis, verified by extensive simulations, confirms a performance improvement of 9.3% for the square-and-multiply s...

متن کامل

Lightweight Transformation of Tabular Open Data to RDF

Currently, most Open Government Data portals mainly offer data in tabular formats. These lack the benefits of Linked Data, expressed in RDF graphs. In this paper, we propose a fast and simple semi-automatic tabular-to-RDF mapping approach. We introduce an efficient transformation algorithm for finding optimal relations between columns based on ontology information. We deal with multilingual div...

متن کامل

Using sensitivity analysis and visualization techniques to open black box data mining models

0020-0255/$ see front matter 2012 Elsevier Inc http://dx.doi.org/10.1016/j.ins.2012.10.039 ⇑ Corresponding author. E-mail addresses: [email protected] (P. Cor In this paper, we propose a new visualization approach based on a Sensitivity Analysis (SA) to extract human understandable knowledge from supervised learning black box data mining models, such as Neural Networks (NNs), Support Vector...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithms

سال: 2023

ISSN: ['1999-4893']

DOI: https://doi.org/10.3390/a16040181